Clustering and feature selection using sparse principal component analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering and Feature Selection using Sparse Principal Component Analysis

In this paper, we use sparse principal component analysis (PCA) to solve clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to int...

متن کامل

Sparse Principal Component Analysis Incorporating Stability Selection

Principal component analysis (PCA) is a popular dimension reduction method that approximates a numerical data matrix by seeking principal components (PC), i.e. linear combinations of variables that captures maximal variance. Since each PC is a linear combination of all variables of a data set, interpretation of the PCs can be difficult, especially in high-dimensional data. In order to find ’spa...

متن کامل

Sparse Principal Component Analysis

Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Web Page Categorization and Feature Selection Using Association Rule and Principal Component Clustering

Clustering techniques have been used by many intelligent software agents in order to retrieve, lter, and categorize documents available on the World Wide Web. Clustering is also useful in extracting salient features of related web documents to automatically formulate queries and search for other similar documents on the Web. Traditional clustering algorithms either use a priori knowledge of doc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization and Engineering

سال: 2008

ISSN: 1389-4420,1573-2924

DOI: 10.1007/s11081-008-9057-z